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Introduction

The radiation degradation of solar cells and solar arrays is extremely important to spacecraft
power system designers since often the satellite mission duration is determined by the space-
particle radiation degradation of the power system components. Since solar cells (solar arrays)
are the most common power source component in satellite power systems, their performance and
radiation degradation characteristics are critical in proper power system sizing and operations.
GaAs/Ge solar cells are more efficient and have shown superior resistance to the space-particle
radiation environment than silicon solar cells,! and their use is becoming more common in satel-
lite programs. However, since the advanced GaAs/Ge technology has not had a long heritage of
space flight data, ground test measurements and theoretical performance modeling are extremely
important. There have been many papers written on both the measured radiation degradation of
GaAs/Ge solar cells2:3:4.5 and the modeling of the solar cell performance,ﬁ’7 but there still lacks a
complete assessment of the accuracy of the models and the underlying solar cell physics. This
report addresses application of the standard silicon solar cell degradation model to high-
efficiency GaAs/Ge solar cells.




Radiation Degradation Data

The radiation degradation of GaAs/Ge solar cells has been previously investigated, and the per-
formance data has been measured as a function of 1-MeV electron fluence.2:3:4:5 Early GaAs
solar cells were grown by liquid-phase epitaxy (LPE) and had only moderate efficiencies.
Improved efficiencies were obtained by MOCVD growth of the GaAs layers, and due to cost and
weight limitations, Ge was used as the bulk substrate material. Since the initial production of
MOCVD GaAs/Ge solar cells, improvements in the beginning-of-life (BOL) efficiencies and
increased yields have been obtained. However, while the BOL efficiencies have increased, the
end-of-life (EOL) efficiencies (assumed to be 1 X 1016 1-MeV electrons/cm?2) have remained
relatively constant. Therefore, the normalized power ratios, irradiated maximum power/pre-
irradiated maximum power, have actually decreased.8 '

Since the last reported radiation degradation characteristics of 1990 vintage GaAs/Ge solar cells,
further improvements in the BOL efficiencies have been made, as well as improvements in nar-
rowing the spread in efficiencies (standard deviation) in a production lot. It is anticipated that
control of the factors that have increased the average efficiency and decreased the standard
deviation will also result in a higher average EOL efficiency. An investigation into these assump-
tions is underway by examining the electron and proton radiation degradation of high-efficiency
(minimum of 19.5% AMO) 1994 GaAs/Ge solar cells.




Standard Solar-Cell Degradation Modeling

The standard solar-cell radiation degradation model was developed from the reciprocal lifetime
contributions caused by various sets of recombination centers and the basic relationship between
minority carrier lifetime and diffusion length. The model involves degrading the minority-
carrier diffusion length as a function of 1-MeV electron irradiation by a constant degradation
factor. Specifically, the minority carrier diffusion length may be calculated by the following
equation.

1
-1 1Ko, )

2 2
Ln,p LnO,pO

where Ln’p is the degraded electron or hole (respectively) minority-carrier diffusion length,
LnO,pO is the pre-irradiation electron or hole (respectively) minority-carrier diffusion length, Ky
is the minority carrier diffusion length degradation factor, and F is the accumulated 1-MeV elec-
tron fluence.

This type of modeling works well for Si solar cells where the emitter is formed by a very shallow
diffusion into a large base material. Because the performance of the solar cell is dominated by
the absorption, generation, collection, and recombination properties of the base layer, the solar
cell may be modeled by only degrading the base minority-carrier diffusion length. Figure 1
shows the normalized maximum power, open-circuit voltage, and short-circuit current of a con-
ventional K4-3/4 silicon solar cell (10 W-cm, BSR, DAR, 8 mil) as a function of 1-MeV electron
irradiation.® The pre-irradiation solar cell performance was modeled using the commercial PC-
1D program with the following material parameters: Lyg=117.0 mm, S, = 1E7 cm/s, S, = 1E3
cm/s, N = 1.34 x 1015 cm™3, Np =2 x 1020 cm3, and te= 150 nm. The modeled performance
degradation was calculated using Ky = 1.174 X 10-10 to reduce Ly while keeping the other mate-
rial parameter inputs to PC-1D constant. Figure 1 shows that the degradation model predicts the
solar cell performance to within 1% (maximum error occurs in open-circuit voltage at F =1 X
1016 1-MeV electrons/cm?2). The graph shows that the simple minority-carrier diffusion length
degradation model may be used to accurately predict the open-circuit voltage, short-circuit cur-
rent, and maximum power for a conventional Si solar cell at all levels of 1-MeV electron irradia-
tion up to 1016 electrons/cm?2. Similar modeling results have been obtained for other high-
efficiency Si solar cell designs where the solar cell performance is dominated by a single-layer
(base) minority-carrier diffusion length.




GaAs/Ge Solar-Cell Degradation Modeling

To begin the radiation degradation modeling of GaAs/Ge solar cells, it is first important to accu-
rately model the beginning-of-life (pre-irradiation) performance. Figure 2 shows a schematic
diagram of a standard ManTech GaAs/Ge solar cell and the material parameters used in the PC-
1D modeling program. The performance comparisons show that the PC-1D model accurately
predicts the pre-irradiation GaAs/Ge solar cell measurements.

Several groups have investigated the minority-carrier diffusion length degradation constant (KL)
for GaAs, and the literature reports values in the range of 2.5 x 10-7 to 2.5 x 10-8.10 Figure 3
shows how the minority-carrier diffusion lengths in the emitter, base, and AlGaAs window layer
are degraded using the KL equation with KL = 2.5 x 10°7 and KL = 2.5 x 10-8. Evident from
Figure 3 is that regardless of the pre-irradiation minority-carrier diffusion length (emitter diffu-
sion length is greater than the base diffusion length), at high levels of 1-MeV electron irradiation,
the diffusion length is determined by (KL F)"2. This is very important when modeling the end-
of-life performance of GaAs/Ge solar cells. It also provides insight into why there is a narrower
distribution in solar-cell efficiency at end-of-life versus beginning-of-life. The end-of-life per-
formance is independent of the initial minority-carrier diffusion lengths (although the shape of
the performance degradation, or rate of performance degradation, is dependent on the initial
minority-carrier diffusion lengths).

Because both the emitter and base layers of the GaAs/Ge solar cell are active in absorbing photons
and generating electron-hole pairs, each layer must be analyzed separately. The effects of inde-
pendently varying the minority-carrier diffusion length of each layer on the ManTech GaAs/Ge
solar cell performance is calculated using the PC-1D program while keeping the other material
parameters constant. The minority-carrier diffusion lengths are varied by changing the minority
carrier lifetimes (L = YDr) of each layer from 100 ns to 0.01 ns. This range allows the solar cell
performance to be modeled for both improvements and degradation of the minority-carrier life-
times (diffusion lengths). Figure 4 shows the maximum power of the ManTech GaAs/Ge solar
cell as a function of minority-carrier diffusion length for each layer. As expected, the minority-
carrier diffusion length in the window layer does not affect the solar cell performance to a large
extent. However, the emitter minority-carrier diffusion length shows a dominating effect on the
solar cell performance and is significantly more limiting than the base minority-carrier diffusion
length. This is a significant result and is caused by the inability of the generated carriers in the
emitter to reach the depletion region and be collected. Also, the graph shows that a 5% increase
in solar cell performance may be gained by increasing the base minority-carrier diffusion length.
Increasing either the emitter or window layer minority-carrier diffusion length does not greatly
affect the solar cell performance. Again this is anticipated, as once the emitter minority-carrier
diffusion length is sufficiently long for the generated carriers to reach the depletion region, per-
formance gains are not expected.

Once the minority-carrier diffusion length effects on solar cell performance and the KL-radiation
effects on the minority carrier diffusion length are known, it is then possible to model the radia-
tion degradation of GaAs/Ge solar cell performance. Figure 5 shows the normalized performance




of three different degradation models and the measured performance of 1990 GaAs/Ge solar cells
(labeled EQFLUX because the data was supplied with the EQFLUX program from JPL). Each of
the three solar cell models uses a constant series resistance (Rs), shunt resistance (Rsh), andn =2
recombination diode saturation current (I02) as functions of irradiation throughout the calcula-
tions. At each fluence of 1-MeV electron irradiation, the minority-carrier diffusion lengths in the
window, base, and emitter layers are calculated from the KL equation and are supplied as inputs to
the PC-1D program. Model A in Figure 5 uses the same K value for the window, base, and
emitter layers (KL =2.5 x 10-7). Model B in Figure 5 also uses the same K[ value for the three
layers but uses a different value (KL = 2.5 x 10-8). Evident from Figure 5 is that neither model
accurately predicts the measured solar cell performance. Model B predicts too little degradation
in the open-circuit voltage, short-circuit current, and maximum power. Model A predicts signifi-
cantly too much degradation in maximum power and short-circuit current but too little degrada-
tion in the open-circuit voltage. Therefore, it is evident that a model based on a single KL value
for all three solar-cell layers will not accurately predict the measured solar cell performance.
Model C uses two different KL values, one for the base and one for the emitter. Since the emitter
minority-carrier diffusion length is the dominating factor in determining the end-of-life short
circuit current and the KL value determines the minority-carrier diffusion length at high levels of
electron irradiation, the emitter layer K1 value was chosen to match the measured Isc at 1 x 1016
1-MeV electrons/cm?2. The base layer K, value was chosen to match the measured Voc at 1 x
1016 1-MeV electrons/cm2. However, at this level of electron irradiation, the predicted maximum
power does not match the measured Pmax, nor does the shape of the calculated short-circuit cur-
rent and maximum power degradation curves. Therefore, even allowing for separate KI values in
both the emitter and base layers, the model does not accurately predict the measured GaAs/Ge
solar cell performance degradation.

Since the simple model of degrading only the minority-carrier diffusion length in the emitter and
base layers did not accurately predict the measured GaAs/Ge solar cell performance degradation,
additional factors were investigated. The light-biased I-V curves as functions of 1-MeV electron
irradiation for an average GaAs/Ge solar cell were curve-fit (using the least-squares method) to
the double-diode equation to provide the four main solar-cell parameters: 101, 102, Rs, and Rsh.
Figure 6 shows the series and shunt resistance as functions of 1-MeV electron irradiation. The
graph shows that while there is an increase in series resistance and a decrease in shunt resistance,
the values are well represented by their respective averages. Also, the changes in the resistance
values do not greatly affect the solar cell performance. Figure 7 shows the depletion region
recombination diode saturation current (I02) as a function of 1-MeV electron irradiation and the
In> values calculated from the minority-carrier lifetimes!! used in the PC-1D calculations in
Model C above (the best-fit model that separately degrades the emitter and base minority-carrier
diffusion lengths). The graphs show remarkable agreement except at low levels of electron irra-
diation where the Ip) term does not significantly affect the solar cell performance (I-V curve fit-
ting for Ipp is least accurate in this range). Figure 8 shows both the curve-fit and calculated!2
solar-cell diode reverse saturation current (I01) as a function of 1-MeV electron irradiation.
Again, the calculated 101 is obtained using the solar-cell material properties from the most accu-
rate model above (Model C).

At low levels of electron irradiation, the curve-fit and calculated values are in excellent agreement.
However, at moderate and high levels of electron irradiation, the curve-fit Ig] value is significantly




greater than the calculated value. This implies that some other material property in the Io1 equa-
tion (i.e., surface recombination velocity, diffusion coefficient, etc.) is changing as a function
electron irradiation in addition to the minority-carrier diffusion length. Therefore, a simple
mode] that degrades only the minority-carrier diffusion length is not adequate to predict the
radiation degradation of GaAs/Ge solar cells.
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Summary

The conventional model used to predict the performance degradation of silicon solar cells does
not adequately predict the radiation degradation of GaAs/Ge solar cells. Analysis of the simple
minority-carrier diffusion length degradation model and the measured solar cell performance
reveals that the diffusion length is not the only solar-cell material parameter that is changing with
radiation. A more detailed, comprehensive radiation degradation model is needed to accurately
predict GaAs/Ge solar cell performance. However, it is also apparent that the emitter minority-
carrier diffusion length is the performance-limiting factor in the radiation degradation of
GaAs/Ge solar cells, and an increased end-of-life efficiency could be obtained by a thinner emit-
ter layer.
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propellant chemistry, chemical dynamics, environmental chemistry, trace detection;
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